Spectral correspondence theorem for Higgs fields

Y. Frankevych, V. Goncharenko, D. Ukshe Under guidance of M. Matviichuk

Yulia's Dream conference, June 13, 2024

A *Higgs field* is a square matrix that has power series as its elements.

We can define a *Higgs field* as an element of $\phi \in Mat_{n \times n}([[x]])$.

(Here $\mathbb{C}[[x]] = \{a_0 + a_1x + a_2x^2 + \dots : a_i \in \mathbb{C}, i \ge 0\}$ is a ring, called the ring of the power series in one variable with complex coefficients.)

Let R be a ring. An *ideal* of R is a subset $I \subseteq R$ such that

- for all $f, g \in I$, we have $f + g \in I$,
- for all $f \in I$, $g \in R$, we have $fg \in I$.

Note that every ideal of R is a subring of R, but not vice versa.

Let R be a ring, and I be an *ideal* in R. Then we can define the *factor ring* R/I whose elements are equivalence classes for the equivalence relation:

$$x \sim y \iff x - y \in I.$$

For $x \in R$, we denote by x + I the equivalence class of x. The addition and mupltiplication on R/I are defined as follows:

$$(x + I) + (y + I) = (x + y) + I,$$

 $(x + I)(y + I) = (xy) + I.$

Note that representing an equivalence class as x + I is not unique. It is possible that x + I = x' + I, y + I = y' + I.

Let $\phi \in \operatorname{Mat}_{n \times n}(\mathbb{C}[[x]])$ be a *Higgs field*. The *characteristic* polynomial of ϕ is defined as

$$\chi_{\phi}(x,y) = \det(yI_n - \phi),$$

where I_n is the identity matrix of size n.

E. g. the *characteristic polynomial* of the matrix

$$egin{pmatrix} 0 & x^2 & 0 \ 0 & 0 & x^2 \ x & 0 & 0 \end{pmatrix}$$

is
$$\chi_{\phi}(x, y) = y^3 - x^5$$
.

The spectral ring of ϕ is the factor ring

 $R_{\phi} = \mathbb{C}[[x, y]/(\chi_{\phi}(x, y)),$ where $(\chi_{\phi}(x, y))$ is the *ideal* $\{\chi_{\phi}(x, y)f, f \in R_{\phi}\}$, and $\mathbb{C}[[x, y] = \{y^m f_m(x) + y^{m-1} f_{m-1}(x) + \dots + y f_1(x) + f_0(x) : f_i \in \mathbb{C}[[x]]\}.$

Let $\phi \in \operatorname{Mat}_{n \times n}(\mathbb{C}[[x]])$ be a *Higgs field*, and $R_{\phi} = \mathbb{C}[[x, y]/(\chi_{\phi}(x, y))$ be its *spectral ring*. The *spectral module* of ϕ is a module M_{ϕ} over R_{ϕ} with coordinatewise addition and the action of R_{ϕ} on M_{ϕ} defines as follows:

$$x \cdot \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} xf_1 \\ xf_2 \\ \vdots \\ xf_n \end{pmatrix}, \quad y \cdot \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \phi \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} \phi_{11}f_1 + \dots + \phi_{1n}f_n \\ \phi_{21}f_1 + \dots + \phi_{2n}f_n \\ \vdots \\ \phi_{n1}f_1 + \dots + \phi_{nn}f_n \end{pmatrix}$$

Spectral correspondence: Introduction

Assuming we have a fixed characteristic polynomial χ of ϕ , is there a normal form for ϕ ?

E.g. if $\chi(x,y) = y^n - x$, then ϕ is isomorphic to

How to characterise all non-isomorphic Higgs fields ϕ for a given characteristic polynomial χ ?

In order to answer these questions, we will consider the relationship between *Higgs fields* $\phi \in \operatorname{Mat}_{n \times n}(\mathbb{C}[[x]])$ and special modules over $R = \mathbb{C}[[x, y]/(\chi)$.

Fraction ring

Definition 7

The fraction ring $\operatorname{Frac}(R)$ of R is the set of "fractions" $\frac{r}{q}$, $r \in R, q \in R \setminus \{0\}$, modulo the equivalence relation

$$\frac{r}{q} \sim \frac{r'}{q'}$$
, if $rq' = r'q$.

Every module M over R induces a module $\widetilde{M} = M \otimes_R \operatorname{Frac}(R)$ over $\operatorname{Frac}(R)$. In other words, the elements of \widetilde{M} are linear combinations of pairs $m \otimes \frac{r}{q}, m \in M, \frac{r}{q} \in \operatorname{Frac}(R)$, modulo the equivalence relations:

$$m_1 \otimes \frac{r}{q} + m_2 \otimes \frac{r}{q} \sim (m_1 + m_2) \otimes \frac{r}{q},$$
$$m \otimes \frac{r}{q} + m \otimes \frac{r'}{q'} \sim m \otimes \left(\frac{r}{q} + \frac{r'}{q'}\right),$$
$$m r' \otimes \frac{r}{q} \sim m \otimes r' \frac{r}{q}.$$

Assume that R has no zero divisors (there are no non-zero elements that divide zero). A module M over R is called *torsion-free* if $r \cdot m = 0$, for some $r \in R, m \in M$, then r = 0 or m = 0.

Definition 9

A module M over R is said to have *rank one*, if the induced module \widetilde{M} over $\operatorname{Frac}(R)$ is isomorphic to $\operatorname{Frac}(R)$.

Theorem (Beauville-Narasimhan-Ramanan)

Let $\chi \in \mathbb{C}[[x, y]$ be irreducible, $n = \deg_y(\chi)$. Then there is a one-to-one correspondence between the following two sets:

Consider the characteristic polynomial $\chi = y^2 - x^k$ (k is odd). Our goal is to describe all torsion-free rank 1 modules over $R = \mathbb{C}[[x, y]/(\chi).$

We will need to use the following lemma:

Lemma

For every torsion-free rank one module M over R there is a injective module homomorphism of M into \overline{R} (where $\overline{R} = C[[t]]$) so that:

$$R \subseteq M \subseteq \overline{R}$$

In our example, we can use $x \to t^2$ and $y \to t^k$.

Example

1. $M = R = \mathbb{C}[[x, y]/\chi$. Let (1, y) be the basis over $\mathbb{C}[[x]]$. Then, all elements of M can be presented as $f \cdot 1 + g \cdot y$, where $f, g \in \mathbb{C}[[x]]$. In other words,

$$M = \bigoplus_{\mathbb{C}[[x]]}$$
as $\mathbb{C}[[x]]$ -module $\mathbb{C}[[x]]$

Then, as multiplication by ϕ is the same as multiplication by y,

$$\phi\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$
 and $\phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}x^k\\0\end{pmatrix}$

Hence, in this case $\phi = \begin{pmatrix} 0 & x^k \\ 1 & 0 \end{pmatrix}$.

Example

2. $M = \overline{R}$. Let $x \cdot m = t^2 \cdot m$, and $y \cdot m = t^k \cdot m$ for all $m \in M$. Then, (1, t) is the basis of M over $\mathbb{C}[[t]]$, and

$$y \cdot 1 = t^k = 0 \cdot 1 + t^{k-1} \cdot t$$
 $y \cdot t = t^{k+1} = t^{k+1} \cdot 1 + 0 \cdot t$

Note that χ is irreducible, so k must be odd. Therefore, we get

$$\phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}0\\t^{k-1}\end{pmatrix} = \begin{pmatrix}0\\x^{\frac{k-1}{2}}\end{pmatrix} \qquad \phi\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}t^{k+1}\\0\end{pmatrix} = \begin{pmatrix}x^{\frac{k+1}{2}}\\0\end{pmatrix}$$

٠

Hence, here we get
$$\phi = \begin{pmatrix} 0 & x^{\frac{k+1}{2}} \\ x^{\frac{k-1}{2}} & 0 \end{pmatrix}$$

Now, recall that $R \subseteq M \subseteq \overline{R}$, and think of M/R as a submodule of $\overline{R}/R = \langle t, t^3, t^5, ..., t^{k-2} \rangle$.

Let *i* be the smallest integer such that $t^{2i-1} \in M$. Then, $t^{2j-1} = t^{2i-1} \cdot x^{j-i}$ (j > i), must also be in M.

Thus, we have shown that $M/R = \langle t^{2i-1}, t^{2i+1}, ..., t^{k-2} \rangle$. (Notice that $M = \overline{R}$ is a subcase of the ring above.)

Finally, consider the general case.

Example

3.
$$M/R = \langle t^{2i-1}, t^{2i+1}, ..., t^{k-2} \rangle$$
.
In this case, $(1, t^{2i-1})$ is the basis of M over $\mathbb{C}[[x]]$, and we have:
 $y \cdot 1 = t^k = 0 \cdot 1 + t^{k+1-2i} \cdot t^{2i-1}, \quad y \cdot t^{2i-1} = t^{k+2i-1} = t^{k+2i-1} \cdot 1 + 0 \cdot t^{2i-1}$

Therefore,

$$\phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}0\\t^{k+1-2i}\end{pmatrix} = \begin{pmatrix}0\\x^{\frac{k+1-2i}{2}}\end{pmatrix}, \ \phi\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}t^{k+2i-1}\\0\end{pmatrix} = \begin{pmatrix}x^{\frac{k+2i-1}{2}}\\0\end{pmatrix}$$

So, the Higgs field
$$\phi = \begin{pmatrix} 0 & x^{\frac{k+2i-1}{2}} \\ x^{\frac{k+1-2i}{2}} & 0 \end{pmatrix}$$
 for $i = 1, 2, ..., \frac{k-1}{2}$.
In conclusion, we have proved that $\phi = \begin{pmatrix} 0 & x^{\frac{k-1+2i}{2}} \\ x^{\frac{k+1-2i}{2}} & 0 \end{pmatrix}$

ave proved mat φ in conclusion,

for $i = 1, 2, ..., \frac{k+1}{2}$.

Higgs fields $\phi \in \operatorname{Mat}_{3 \times 3}(\mathbb{C}[[x]])$

$$\blacktriangleright \ \chi(x,y) = y^3 - x^4$$

$$\blacktriangleright \ \chi(x,y) = y^3 - x^5$$

$$\blacktriangleright \ \chi(x,y) = y^3 - x^7$$

THANK YOU!